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Introduction Motivation

• Model behavior of water over and in a porous medium

⇒ Better understanding erosion and �ooding phenomenon
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Introduction Motivation

• Clément in 2021 developed RIVAGE, a Discontinuous Galerkin solver

for Richards' equation

− Addressed Flow of water in the porous medium, one way coupling

⇒ Theoretical study of convergence for the DG solver for Richards'

equation

⇒ Implement in RIVAGE a DG solver for a free surface model

⇒ Coupling with Richards' equation and Shallow water equations

established by an asymptotic study
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Introduction Discontinuous Galerkin Methods

• Based on a variational formulation as in Finite Element Methods

(FEM)

• Designed in an element-wise way as in Finite Volume Methods (FVM)

Elliptic problem :

Richards' Equation

• Close to FEM methods

• Use of user de�ned penalization

parameters

Hyperbolic problem :

Shallow Water Equations

• Close to FVM methods

• Spurious oscillations

• Treatment of void problems
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Generic non-linear elliptic problem

1 Generic non-linear elliptic problem

2 Non-linear Hyperbolic problem
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Generic non-linear elliptic problem Richards' Equation

• They are derived from mass conservation and Darcy's law for a

two-phase �ow

• Parabolic non-linear equation which describes �ow in a porous medium

Richards' equation

∂tθ(h− z)−∇ · (K(h− z)∇h) = 0
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Generic non-linear elliptic problem Richards' Equation

• They are derived from mass conservation and Darcy's law for a

two-phase �ow

• Parabolic non-linear equation which describes �ow in a porous medium

Richards' equation

∂tθ(h− z)−∇ · (K(h− z)∇h) = 0

• h : hydraulic head [L]

• z : elevation [L]

• ψ = h− z : pressure head [L]

• θ : water content [∽]

• K : hydraulic conductivity
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Generic non-linear elliptic problem Richards' Equation

Generic non-linear problem: steady state of Richards' equation

Let us consider the problem (P) on the interval Ω = [a, b] ⊂ R:
For a given f in L2(Ω), �nd u(x) : Ω −→ R such that

(P)

{
−(K(x, u)u′)′ = f, in Ω

u = 0, on ∂Ω
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Generic non-linear elliptic problem Weak formulation

(P) can be cast into the weak formulation (V)

(V) : Find u ∈ H1
0 (Ω) such that, a(u, v;u) = l(v), ∀v ∈ H1

0 (Ω)

with a(u, v;u) = −
∫
Ω
(K(x, u)u′)′vdx and l(v) =

∫
Ω
fvdx

Assuming that

(H) : 0 < K0 ≤ K(x, u) ≤ K1, ∀x ∈ Ω, ∀u ∈ L2(Ω)

• Non-linear weak formulation

⇒ Fixed point method to solve the non linear problem

⇒ Lax-Milgram theorem applied to the linearized problem

⇒ Discretization using Discontinuous Galerkin methods

7/39 C. Poussel NTM 2023



Generic non-linear elliptic problem Weak formulation

(P) can be cast into the weak formulation (V)

(V) : Find u ∈ H1
0 (Ω) such that, a(u, v;u) = l(v), ∀v ∈ H1

0 (Ω)

with a(u, v;u) = −
∫
Ω
(K(x, u)u′)′vdx and l(v) =

∫
Ω
fvdx

Assuming that

(H) : 0 < K0 ≤ K(x, u) ≤ K1, ∀x ∈ Ω, ∀u ∈ L2(Ω)

• Non-linear weak formulation

⇒ Fixed point method to solve the non linear problem

⇒ Lax-Milgram theorem applied to the linearized problem

⇒ Discretization using Discontinuous Galerkin methods

7/39 C. Poussel NTM 2023



Generic non-linear elliptic problem Continuous problem : Existence and uniqueness

It yields a linearized problem of (V):

Operator T : For a given ū ∈ L2(Ω),

(Ṽ) : Find u ∈ H1
0 (Ω) such that, ã(u, v; ū) = l(v), ∀v ∈ H1

0 (Ω)

with ã(u, v; ū) = −
∫
Ω
(K(x, ū)u′)′vdx and l(v) =

∫
Ω
fvdx

• T (u) = u leads to the �xed-point method

• Proof of existence using Schauder �xed-point theorem

• Proof of uniqueness following the work of Boccardo, Gallouët and

Murat1

1Boccardo, Thierry, and Murat. C. R. Acad. Sci. Paris. 1992-01.

8/39 C. Poussel NTM 2023



Generic non-linear elliptic problem Continuous problem : Existence and uniqueness

It yields a linearized problem of (V):

Operator T : For a given ū ∈ L2(Ω),
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0 (Ω)
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Generic non-linear elliptic problem Space discretization

• Let a = x0 < ... < xN = b be a mesh Eh of Ω = [a, b] and denote

In = (xn, xn+1) a cell :

I0 In IN−1

a = x0 x1 xn xn+1 xN−1 xN = b

We de�ne:

|In| = h =
b− a

N
, ∀n ∈ {0, .., N − 1}.
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Generic non-linear elliptic problem Space discretization

Let de�ne the �nite element subspace:

V p
h =

{
v ∈ H1

0 (Ω) | ∀In ∈ Eh, v|In ∈ Pp(In)
}

the set of piecewise polynomials functions

⇒ Basis function are not continuous contrary to FEM methods

⇒ v ∈ V p
h not necessarily continuous on xn

De�ne the jump and the average at xn:

JvKxn = v(x−n )− v(x+n ), ⦃v⦄xn =
1

2

(
v(x−n ) + v(x+n )

)

xn−1

In−1 xn In xn+1•

v(x−n )

v(x+n )•

•

•JvKxn

■⦃v⦄xn
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Generic non-linear elliptic problem Link with EF method and FV method

Take (Ṽ) and take uh ∈ V p
h and vh ∈ V p

h :

ã(uh, vh) = l(vh) ⇔ −
N−1∑
n=0

∫
In

(K(x, ū)u′h)
′vhdx =

∫
Ω
fvhdx

11/39 C. Poussel NTM 2023



Generic non-linear elliptic problem Link with EF method and FV method
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ã(uh, vh) = l(vh) ⇔ −
N−1∑
n=0

∫
In

(K(x, ū)u′h)
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Generic non-linear elliptic problem Discrete Linearized weak formulation

• Incomplete Interior Penalty Galerkin (IIPG) method introduced by

Dawson, Sun and Wheeler2 in 2004.

Rearrange the Discontinuous Galerkin formulation, assuming that

JK(x, ū)u′hKxn = 0 and with penalization parameters σn:

2Dawson, Sun, and Wheeler. Computer Methods in Applied Mechanics and Engineering. 2004.
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JK(x, ū)u′hvhKxn

with JabK = JaK⦃b⦄+ ⦃a⦄JbK

2Dawson, Sun, and Wheeler. Computer Methods in Applied Mechanics and Engineering. 2004.

12/39 C. Poussel NTM 2023



Generic non-linear elliptic problem Discrete Linearized weak formulation

• Incomplete Interior Penalty Galerkin (IIPG) method introduced by

Dawson, Sun and Wheeler2 in 2004.

Rearrange the Discontinuous Galerkin formulation, assuming that
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K(x, ū)u′hv
′
hdx−

N∑
n=0
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Generic non-linear elliptic problem Discrete Linearized weak formulation

The discrete linearized problem (Ṽh) can now be de�ned:

(Ṽh)
{

Find uh ∈ V p
h such that, ãh(uh, vh) = lh(vh), ∀vh ∈ V p

h

Assuming that

(Hh)

{
∃K(n)

0 ,K
(n)
1 ∈ R∗

+, ∀x ∈ In, K
(n)
0 ≤ K(x, ū) ≤ K

(n)
1

and K0 := min
n
K

(n)
0 and K1 := max

n
K

(n)
1
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(n)
1

and K0 := min
n
K

(n)
0 and K1 := max

n
K

(n)
1

13/39 C. Poussel NTM 2023



Generic non-linear elliptic problem Discretized problem : Existence and uniqueness

Lemma (Existence and uniqueness of the discrete solution for the linearized

discrete problem (Ṽh))

Consider ū ∈ V p
h , then ∃!uh ∈ V p

h such that ãh(uh, vh) = lh(vh), ∀vh ∈ V p
h

• Proof with Lax-Milgram theorem.

We associate V p
h with the norm:

∥v∥2 =
N−1∑
n=0

∥v′∥2In +
N∑

n=0

1

h
JvK2xn

=
N−1∑
n=0

∥v′∥2In + |v|2J

Where ∥ · ∥In is the usual norm L2(In) and |v|2J :=
∑N

n=0
1
hJvK2xn

is the

jump semi-norm.
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Generic non-linear elliptic problem Coercivity and continuity

Following the work of Epshteyn and Rivière3 we are able to prove

Lemma (Discrete coercivity of ãh)

For any vector of positive numbers ϵ = (ε(n))n and α > 0, there exists a

constant C∗(α, ϵ) > 0 such that ∀uh ∈ V p
h , ãh(uh, uh) ≥ C∗(α, ϵ)∥uh∥2

Lemma (Discrete continuity of ãh)

For any vector of positive numbers ϵ = (ε(n))n and α > 0, there exists a

constant C̃(α, ϵ) > 0 such that

∀uh, vh ∈ V p
h , |ãh(uh, vh)| ≤ C̃(α, ϵ)∥uh∥ ∥vh∥

Lemma (Discrete continuity of lh)

There exists a constant B > 0 such that ∀vh ∈ V p
h , |lh(vh)| ≤ B∥vh∥.

3Epshteyn and Rivière. Journal of Computational and Applied Mathematics. 2007.
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Generic non-linear elliptic problem Coercivity and continuity

Proofs give us :

• lower bounds for penalization parameters

{
∀n, ε(n) < 2, σn = ασ∗n
with α > 1

with



∀n ∈ {1, ..., N − 1},

σ∗n =
(K

(n)
1 Ctr)

2

2ε(n)K
(n)
0

;

σ∗0 =
(K

(0)
1 Ctr)

2

ε(0)K
(0)
0

;

σ∗N =
(K

(N−1)
1 Ctr)

2

ε(N−1)K
(N−1)
0

.

• Expressions for C∗(α, ϵ) and C̃(α, ϵ)
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Generic non-linear elliptic problem Convergence of discrete towards continuous solution

Following the work of Di Pietro and Ern published in 20114

Theorem (Convergence to minimal regularity solutions)

Let p ≥ 1, uh be a sequence of approximate solutions generated by solving

the discrete linearized problem (Ṽh) with penalty parameters ensuring

coercivity. Then as h→ 0

uh −→ u strongly in L2(Ω)

u′h −→ u′ strongly in L2(Ω)

|uh|J → 0

where u ∈ H1
0 (Ω) is the unique solution of the problem (Ṽ).

4Di Pietro and Ern. 2011-11-03.
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Generic non-linear elliptic problem Optimal Penalization parameters

• Found lower bounds for penalization parameters σn

• Can't consider σn as big as possible.

▶ Projection matrix condition number link to σn

• Optimal values for σn?

• Céa's lemma links C∗ and C̃ to the approximation error
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Generic non-linear elliptic problem Optimal Penalization parameters

Lemma (Céa's lemma)

Let u ∈ H1
0 (Ω) be the solution of (Ṽ) and uh the solution of (Ṽh) then

∀v ∈ H1
0 (Ω) we have :

∥u− uh∥ ≤ γ∥u− v∥,

with γ(α, ϵ) =
C̃(α, ϵ)

C∗(α, ϵ)

• Find values for α and ε such that ãh is coercive, continue and γ(α, ε)
is minimal
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Generic non-linear elliptic problem Optimal Penalization parameters

Lemma (Céa's lemma)

Let u ∈ H1
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Generic non-linear elliptic problem Optimal Penalization parameters

For instance :

In the case of ε(n) = ε, ∀n and a certain con�guration we seek min of

these functions:

ε

α

|
0
−1 |

2

µ1
α

ε(2−ε)µ1
α

ε(2−ε)

µ2
ε

2−εµ2
ε

2−ε

µ3
α

α−1µ3
α

α−1

µ4
ε2

α−1µ4
ε2

α−1

•
(εopt, αopt)

• We �nd (αopt, εopt) ∈]1,+∞[×]0, 2[ such that γ is minimal

• αopt and εopt are function of K0 and K1

• We can now �nd automatically penalization parameters with

σn = αoptσ
∗
n(εopt)
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Generic non-linear elliptic problem Numerical results

Haverkamp's test case

• Problem based on physical experiment5

• In�ltration in soil

• Modeled by Richards' equation using Vachaud's6 relations

5Haverkamp et al. Soil Science Society of America Journal. 1977.

6Vachaud and Thony. Water Resources Research. 1971-02.
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Haverkamp's test case

• Problem based on physical experiment5

• In�ltration in soil

• Modeled by Richards' equation using Vachaud's6 relations

0

0.002

0.004

0.006

0.008

0.01

−70 −60 −50 −40 −30 −20 −10 0

K
(ψ

)

ψ

0.05

0.1

0.15

0.2

0.25

0.3

−200 −150 −100 −50 0
θ(
ψ
)

ψ

5Haverkamp et al. Soil Science Society of America Journal. 1977.

6Vachaud and Thony. Water Resources Research. 1971-02.
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Generic non-linear elliptic problem Numerical results

Haverkamp's test case

• Problem based on physical experiment5

• In�ltration in soil

• Modeled by Richards' equation using Vachaud's6 relations

Find ψ(x, t) : [0, 40]× [0, T ] −→ R such that
∂tθ(ψ)− ∂x(K(ψ))∂x(ψ + x)) = 0 , in ]0, 40[×[0, T ]

ψ(z, 0) = −61.5 , in ]0, 40[

ψ(0, t) = −61.5 , in [0, T ]

ψ(40, t) = −20.7 , in [0, T ]

• Piecewise linear approximation, ∆x = 1

• Time integration with backward Euler method

5Haverkamp et al. Soil Science Society of America Journal. 1977.

6Vachaud and Thony. Water Resources Research. 1971-02.
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Generic non-linear elliptic problem Numerical results

Haverkamp's test case

−65

−60

−55

−50

−45

−40

−35
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−25

−20

0 5 10 15 20 25 30 35 40

t
=

60
0s

t
=

48
0s

t
=

36
0s

t
=

24
0s

t
=

12
0s

ψ

x

Manzini et al.
DG p = 1

• Good agreement with Manzini et al.7 VF methods

7Manzini and Ferraris. Advances in Water Resources. 2004-12.
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Generic non-linear elliptic problem Numerical results

Haverkamp's test case
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Figure: Penalization parameters plot for the numerical solution
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Generic non-linear elliptic problem Elliptic problem summary

• Addressed the problem of penalization parameters values

▶ Auto calibrated

▶ Not increase condition number

▶ Minimize error

• Proved that the whole loop of resolution converges to the unique weak

solution

• Developed a one dimensional code and validated it

⇒ Implement auto calibration of penalization parameters in 2D and 3D
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Non-linear Hyperbolic problem

1 Generic non-linear elliptic problem

2 Non-linear Hyperbolic problem
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Non-linear Hyperbolic problem Shallow water equations


∂t

 ζ

qx

qy

+∇ ·


qx qy

q2x
ζ

+ g
ζ2

2

qxqy
ζ

qxqy
ζ

q2y
ζ

+ g
ζ2

2

 =

 0

−gζ∂xz
−gζ∂yz

 in Ω×]0, T [,

Initial and Boundary conditions,

• Depth-averaged incompressible

Navier-Stokes Equations

• Hyperbolic system
x

z(x, y)

ζ(x, y)
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Non-linear Hyperbolic problem Shallow water equations

{
∂tU +∇ ·G(U) = S(U, z) in Ω×]0, T [,

Initial and Boundary conditions,

• Depth-averaged incompressible

Navier-Stokes Equations

• Hyperbolic system
x

z(x, y)

ζ(x, y)
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Non-linear Hyperbolic problem Space & Time discretization

Space discretization: the mesh Eh

• Unstructured mesh

• Non conformal mesh

• Mesh adaptation along

calculation

Adaptation criterion:

• ∇ζ • Production of numerical entropy
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Non-linear Hyperbolic problem Space & Time discretization

Space discretization: variational formulation

Solution space: V p
h =

{
v ∈ H1

0 (Ω) | ∀In ∈ Eh, v|In ∈ Pp(In)
}
the set of

piecewise polynomials functions

• p = 0 Finite volume methods: piecewise constant

• p = 1 Piecewise linear and so on

Find Uh := (ζh, (qx)h, (qy)h) ∈ [V p
h (E)]3 such that

∀t ∈]0, T [,

∀φh ∈ [V p
h (E)]3 and ∀E ∈ Eh

{
∂tUh +∇ ·G(Uh) = S(Uh, zh),

Initial and Boundary conditions,
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Non-linear Hyperbolic problem Space & Time discretization

Space discretization: variational formulation

Solution space: V p
h =

{
v ∈ H1

0 (Ω) | ∀In ∈ Eh, v|In ∈ Pp(In)
}
the set of

piecewise polynomials functions

• p = 0 Finite volume methods: piecewise constant

• p = 1 Piecewise linear and so on

Find Uh := (ζh, (qx)h, (qy)h) ∈ [V p
h (E)]3 such that

∀t ∈]0, T [, ∀φh ∈ [V p
h (E)]3 and ∀E ∈ Eh

∫
E
φh∂tUh −

∫
E
∇φh : G(Uh)

T +
∑

F∈FE
h

∫
F
φhĜF (Uh) =

∫
E
φhS(Uh, zh)

Initial condition
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Non-linear Hyperbolic problem Space & Time discretization

Time discretization

Uh|E and φh linear combination of polynomial: ∀(x, y), t ∈ E×]0, T ]

Uh|E(x, y, t) = Φ(x, y) ·UE(t) and φh(x, y) = Φ(x, y)

∫
E
Φ⊗Φ︸ ︷︷ ︸
ME

dUE

dt
=

∫
E
∇Φ : G(Uh)

t −
∑

F∈FE
h

∫
F
ΦĜF (Uh) +

∫
E
ΦS(Uh, zh)

︸ ︷︷ ︸
HE(Uh(t))
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Non-linear Hyperbolic problem Space & Time discretization

Time discretization

ME
dUE

dt
= HE(Uh(t))

Explicit Runge-Kutta method of order q = p+ 1:

• ∆t chosen according to CFL condition linked to8

max
E∈Eh

(
λE
hE

)∆t ≤ 1

2p+ 1

Legendre basis makes mass matrix diagonal and ease analytical calculus

8Cockburn and Shu. Mathematics of Computation. 1989.
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Non-linear Hyperbolic problem Well balanced property

Well balanced property

Solving Shallow Water equation with the previous RKDG method does not

preserve equilibrium states:

• ζ + z ≡ C a constant and q ≡ 0

• ζh and zh in V p
h admit jumps at

elements' interfaces

• Bathymetry is de�ned as

solution, on each elements

• Numerical �uxes no longer

equal to zero 0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

x(m)

ζh not well balanced
zh
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Non-linear Hyperbolic problem Well balanced property

Hydrostatic reconstruction

Variational formulation modi�ed9 such that interfaces �ux cancels out if

ζ + z ≡ C

∫
E
φh
∂Uh

∂t
−
∫
E
∇φh : G(Uh)

t

+
∑

F∈FE
h

∫
F
φh

(
ĜF (U

⋄
h)−δF (Uh, zh)

)
=

∫
E
φhS(Uh, zh) 0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

x(m)

ζh well balanced
zh

9Ern, Piperno, and Djadel. International Journal for Numerical Methods in Fluids. 2007.

31/39 C. Poussel NTM 2023



Non-linear Hyperbolic problem Limiting procedure

Moment limiting

Spurious oscillations around discontinuities, due to:

• Hyperbolic problem

• High order scheme (p > 0)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

6 6.5 7 7.5 8 8.5 9

ζ
(x
)

x

ζh ∈ P2
h

ζana

• Post processing

• Well suited for non conformal mesh

For each elementa:

1. Estimate n-th derivative with (n− 1)-th
derivative of surrounding elements

2. Minmod comparison with the computed

n-th derivative of the element

aKrivodonova. Journal of Computational Physics. 2007-09.

32/39 C. Poussel NTM 2023



Non-linear Hyperbolic problem Limiting procedure

Moment limiting

Spurious oscillations around discontinuities, due to:

• Hyperbolic problem

• High order scheme (p > 0)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

6 6.5 7 7.5 8 8.5 9

ζ
(x
)

x

ζh ∈ P2
h

ζana

• Post processing

• Well suited for non conformal mesh

For each elementa:

1. Estimate n-th derivative with (n− 1)-th
derivative of surrounding elements

2. Minmod comparison with the computed

n-th derivative of the element

aKrivodonova. Journal of Computational Physics. 2007-09.

32/39 C. Poussel NTM 2023



Non-linear Hyperbolic problem Limiting procedure

Moment limiting

Spurious oscillations around discontinuities, due to:

• Hyperbolic problem

• High order scheme (p > 0)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

6 6.5 7 7.5 8 8.5 9

ζ
(x
)

x

ζh ∈ P2
h

ζana

• Post processing

• Well suited for non conformal mesh

For each elementa:

1. Estimate n-th derivative with (n− 1)-th
derivative of surrounding elements

2. Minmod comparison with the computed

n-th derivative of the element

aKrivodonova. Journal of Computational Physics. 2007-09.

32/39 C. Poussel NTM 2023



Non-linear Hyperbolic problem Flooding and drying treatment

• Loss of hyperbolicity if ζh ≤ 0

⇒ Need to preserve positivity of water depth

FV,p = 0

• •

• •

• •

• •

• •

• •

• •

• •

• •• •
• •

• •• •

• •
• •

• •

z bathymetry

zh ∈ V
p
h

discrete bathymetry

ζ + z water elevation

ζh + zh ∈ V
p
h

discrete water elevation

DG, p = 1

• •

• •

• •

• •

• •

• •

• •
•

• •

•
• •

• •
• •

• •

• Semi-dry cells in DG, p = 1

⇒ Use of post processing to treat dry cells and semi-dry cells
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Non-linear Hyperbolic problem Numerical results

1D Dam-Break
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Figure: Water depth ζh ∈ P1
h compared

with ζana
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Non-linear Hyperbolic problem Numerical results

• Comparison between p = 0 and p = 1 limited for the same amount of

degrees of freedom

⇒ Same precision around choc area

⇒ Better contact discontinuity de�nition
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Non-linear Hyperbolic problem Numerical results

Solitary wave propagation over a two-dimensional reef

Experimental test case over a typical reef con�guration10

• 83.7m long and h0 = 2.5m deep channel

• 1/12 reef slope with a crest 0.065m above water level

• Piecewise cubic approximation (p = 3), Runge Kutta method of order

4

• 500 elements, ∆x = 0.1674

10Roeber, Cheung, and Kobayashi. Coastal Engineering. 2010.
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Non-linear Hyperbolic problem Numerical results
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Non-linear Hyperbolic problem Hyperbolic problem summary

• Solve Shallow Water Equations with RKDG methods

• Ensure well balanced property

• Cancel spurious oscillations on a non-conformal and unstructured mesh

• Solve �ooding and drying problem
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Conclusions and perspectives

Elliptic Hyperbolic

• Auto-calibration of penalization

parameters

• Ensure well balanced property

• Converges to the unique weak

solution

• Moment limiting and positive

depth operator

▶ Implement auto-calibration of penalization parameters in higher

dimensions

▶ Asymptotic model coupling Richards' equation and Shallow Water

Equations
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