

Discontinuous Galerkin methods for elliptic and hyperbolic problems

C. Poussel, M. Ersoy, F. Golay

Université de Toulon, IMATH, EA 2137, 83957 La Garde, France

24 May, 2023

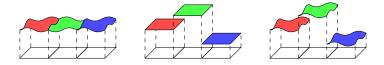
Journées d'Analyse Appliquée Nice Toulon Marseille 2023

- Model behavior of water over and in a porous medium
- \Rightarrow Better understanding erosion and flooding phenomenon

- Clément in 2021 developed RIVAGE, a Discontinuous Galerkin solver for Richards' equation
- Addressed Flow of water in the porous medium, one way coupling
- $\Rightarrow\,$ Theoretical study of convergence for the DG solver for Richards' equation
- \Rightarrow Implement in RIVAGE a DG solver for a free surface model
- $\Rightarrow\,$ Coupling with Richards' equation and Shallow water equations established by an asymptotic study

NTM 2023

- Based on a variational formulation as in Finite Element Methods (FEM)
- Designed in an element-wise way as in Finite Volume Methods (FVM)

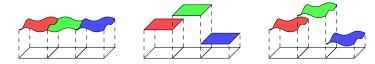


C. Poussel

NTM 2023

C. Poussel

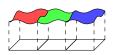
- Based on a variational formulation as in Finite Element Methods (FEM)
- Designed in an element-wise way as in Finite Volume Methods (FVM)

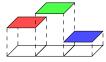


Elliptic problem : Richards' Equation

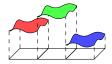
- Close to FEM methods
- Use of user defined penalization parameters

- Based on a variational formulation as in Finite Element Methods (FEM)
- Designed in an element-wise way as in Finite Volume Methods (FVM)





C Poussel



Elliptic problem : Richards' Equation

- Close to FEM methods
- Use of user defined penalization parameters

Hyperbolic problem : Shallow Water Equations

- Close to FVM methods
- Spurious oscillations

NTM 2023

• Treatment of void problems

math F TOULON

1 Generic non-linear elliptic problem

2 Non-linear Hyperbolic problem

v

• They are derived from mass conservation and Darcy's law for a two-phase flow

C. Poussel NTM 2023

Math ZUNIVERSITÉ DE SUB

5/39

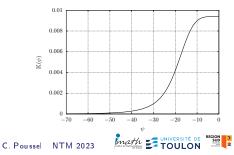
 $\overline{\mathbf{v}}$

- They are derived from mass conservation and Darcy's law for a two-phase flow
- Parabolic non-linear equation which describes flow in a porous medium

Richards' equation

$$\partial_t \theta(h-z) - \nabla \cdot (\mathbb{K}(h-z)\nabla h) = 0$$

- h : hydraulic head [L]
- z : elevation [L]
- $\psi = h z$: pressure head [L]
- heta : water content [\backsim]
- \mathbb{K} : hydraulic conductivity $[L \cdot T^{-1}]$



Generic non-linear problem: steady state of Richards' equation

Let us consider the problem (\mathcal{P}) on the interval $\Omega = [a, b] \subset \mathbb{R}$: For a given f in $L^2(\Omega)$, find $u(x) : \Omega \longrightarrow \mathbb{R}$ such that

$$(\mathcal{P}) \left\{ \begin{array}{rcl} -(K(x,u)u')' &=& f, & \text{in } \Omega \\ u &=& 0, & \text{on } \partial \Omega \end{array} \right.$$

C. Poussel NTM 2023

6/39

 $\overline{\mathbf{v}}$

(\mathcal{P}) can be cast into the weak formulation (\mathcal{V})

$$\begin{aligned} (\mathcal{V}): & \text{ Find } u \in H^1_0(\Omega) \text{ such that, } \quad a(u,v;u) = l(v), \; \forall v \in H^1_0(\Omega) \\ & \text{ with } a(u,v;u) = -\int_{\Omega} (K(x,u)u')'v dx \text{ and } l(v) = \int_{\Omega} fv dx \end{aligned}$$

Assuming that

$$(\mathcal{H}): \quad 0 < K_0 \le K(x, u) \le K_1, \quad \forall x \in \Omega, \ \forall u \in L^2(\Omega)$$

C. Poussel NTM 2023

 \overline{A}

(\mathcal{P}) can be cast into the weak formulation (\mathcal{V})

$$\begin{aligned} (\mathcal{V}): & \text{ Find } u \in H_0^1(\Omega) \text{ such that, } \quad a(u,v;u) = l(v), \; \forall v \in H_0^1(\Omega) \\ & \text{ with } a(u,v;u) = -\int_{\Omega} (K(x,u)u')'vdx \text{ and } l(v) = \int_{\Omega} fvdx \end{aligned}$$

Assuming that

$$(\mathcal{H}): \quad 0 < K_0 \le K(x, u) \le K_1, \quad \forall x \in \Omega, \ \forall u \in L^2(\Omega)$$

- Non-linear weak formulation
- \Rightarrow Fixed point method to solve the non linear problem
- \Rightarrow Lax-Milgram theorem applied to the linearized problem
- \Rightarrow Discretization using Discontinuous Galerkin methods

C. Poussel NTM 2023

It yields a linearized problem of (\mathcal{V}) :

Operator
$$T$$
: For a given $\bar{u} \in L^2(\Omega)$,
 $(\tilde{\mathcal{V}})$: Find $u \in H_0^1(\Omega)$ such that, $\tilde{a}(u,v;\bar{u}) = l(v)$, $\forall v \in H_0^1(\Omega)$
with $\tilde{a}(u,v;\bar{u}) = -\int_{\Omega} (K(x,\bar{u})u')'vdx$ and $l(v) = \int_{\Omega} fvdx$

¹ Boccardo, Thierry, and Murat. C. R. Acad. Sci. Paris. 1992-01.

8/39

 $\overline{\mathbf{v}}$

C. Poussel NTM 2023

It yields a linearized problem of (\mathcal{V}) :

Operator
$$T$$
: For a given $\bar{u} \in L^2(\Omega)$,
 $(\tilde{\mathcal{V}})$: Find $u \in H_0^1(\Omega)$ such that, $\tilde{a}(u,v;\bar{u}) = l(v)$, $\forall v \in H_0^1(\Omega)$
with $\tilde{a}(u,v;\bar{u}) = -\int_{\Omega} (K(x,\bar{u})u')'vdx$ and $l(v) = \int_{\Omega} fvdx$

• T(u) = u leads to the fixed-point method

8/39

 $\overline{\nabla}$

¹ Boccardo, Thierry, and Murat. C. R. Acad. Sci. Paris. 1992-01.

It yields a linearized problem of (\mathcal{V}) :

Operator
$$T$$
: For a given $\bar{u} \in L^2(\Omega)$,
 $(\tilde{\mathcal{V}})$: Find $u \in H_0^1(\Omega)$ such that, $\tilde{a}(u,v;\bar{u}) = l(v)$, $\forall v \in H_0^1(\Omega)$
with $\tilde{a}(u,v;\bar{u}) = -\int_{\Omega} (K(x,\bar{u})u')'vdx$ and $l(v) = \int_{\Omega} fvdx$

C. Poussel

NTM 2023

- T(u) = u leads to the fixed-point method
- Proof of existence using Schauder fixed-point theorem

8/39

 $\overline{\nabla}$

¹ Boccardo, Thierry, and Murat. C. R. Acad. Sci. Paris. 1992-01.

It yields a linearized problem of (\mathcal{V}) :

Operator
$$T$$
: For a given $\bar{u} \in L^2(\Omega)$,
 $(\tilde{\mathcal{V}})$: Find $u \in H_0^1(\Omega)$ such that, $\tilde{a}(u,v;\bar{u}) = l(v)$, $\forall v \in H_0^1(\Omega)$
with $\tilde{a}(u,v;\bar{u}) = -\int_{\Omega} (K(x,\bar{u})u')'vdx$ and $l(v) = \int_{\Omega} fvdx$

- T(u) = u leads to the fixed-point method
- Proof of existence using Schauder fixed-point theorem
- Proof of uniqueness following the work of Boccardo, Gallouët and Murat¹

C. Poussel

NTM 2023

¹ Boccardo, Thierry, and Murat. C. R. Acad. Sci. Paris. 1992-01.

• Let
$$a = x_0 < ... < x_N = b$$
 be a mesh \mathcal{E}_h of $\Omega = [a,b]$ and denote $I_n = (x_n,x_{n+1})$ a cell :

We define:

9/39

$$|I_n| = h = \frac{b-a}{N}, \quad \forall n \in \{0, .., N-1\}.$$

C. Poussel NTM 2023

₹

Let define the finite element subspace:

$$V_h^p = \left\{ v \in H_0^1(\Omega) \mid \forall I_n \in \mathcal{E}_h, \ v_{|I_n} \in \mathbb{P}_p(I_n) \right\}$$

the set of piecewise polynomials functions

Let define the finite element subspace:

$$V_h^p = \left\{ v \in H_0^1(\Omega) \mid \forall I_n \in \mathcal{E}_h, \ v_{|I_n} \in \mathbb{P}_p(I_n) \right\}$$

C. Poussel

NTM 2023

the set of piecewise polynomials functions

 \Rightarrow Basis function are not continuous contrary to FEM methods

 $\Rightarrow v \in V_h^p$ not necessarily continuous on x_n

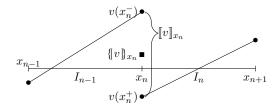
Let define the finite element subspace:

$$V_h^p = \left\{ v \in H_0^1(\Omega) \mid \forall I_n \in \mathcal{E}_h, \ v_{|I_n} \in \mathbb{P}_p(I_n) \right\}$$

the set of piecewise polynomials functions

 \Rightarrow Basis function are not continuous contrary to FEM methods $\Rightarrow v \in V_h^p$ not necessarily continuous on x_n Define the jump and the average at x_n :

$$\llbracket v \rrbracket_{x_n} = v(x_n^-) - v(x_n^+), \quad \{ \llbracket v \rrbracket_{x_n} = \frac{1}{2} \left(v(x_n^-) + v(x_n^+) \right)$$



C. Poussel

NTM 2023

7

$$\tilde{a}(u_h, v_h) = l(v_h) \Leftrightarrow -\sum_{n=0}^{N-1} \int_{I_n} (K(x, \bar{u})u'_h)' v_h dx = \int_{\Omega} f v_h dx$$

11/39

$$\tilde{a}(u_h, v_h) = l(v_h) \Leftrightarrow -\sum_{n=0}^{N-1} \int_{I_n} (K(x, \bar{u})u'_h)' v_h dx = \int_{\Omega} f v_h dx$$

Integrate by parts: Discontinuous Galerkin formulation $\forall v_h \in V_h^p$

$$\Leftrightarrow \sum_{n=0}^{N-1} \int_{I_n} K(x,\bar{u}) u_h' v_h' dx - \sum_{n=0}^{N-1} \left[K(x,\bar{u}) u_h' v_h \right]_{x_n^+}^{x_{n+1}^-} = \int_{\Omega} f v_h dx$$

11/39 -

 $\overline{}$

$$\tilde{a}(u_h, v_h) = l(v_h) \Leftrightarrow -\sum_{n=0}^{N-1} \int_{I_n} (K(x, \bar{u})u'_h)' v_h dx = \int_{\Omega} f v_h dx$$

Integrate by parts: Finite Element formulation $\forall v_h \in H_0^1(\Omega)$

$$\Leftrightarrow \sum_{n=0}^{N-1} \int_{I_n} K(x,\bar{u}) u_h' v_h' dx - \sum_{n=0}^{N-1} \left[\frac{K(x,\bar{u})u_h' v_h}{x_n^+} \right]_{x_n^+}^{x_{n+1}} = \int_{\Omega} f v_h dx$$

11/39

 $\overline{}$

$$\tilde{a}(u_h, v_h) = l(v_h) \Leftrightarrow -\sum_{n=0}^{N-1} \int_{I_n} (K(x, \bar{u})u'_h)' v_h dx = \int_{\Omega} f v_h dx$$

Integrate by parts: Finite Volume formulation $\forall v_h \in V_h^0$

$$\Leftrightarrow \sum_{\pi=0}^{N-1} \int_{I_n} K(x, \bar{u}) u'_h v'_h dx - \sum_{n=0}^{N-1} \left[K(x, \bar{u}) u'_h v_h \right]_{x_n^+}^{x_{n+1}^-} = \int_{\Omega} f v_h dx$$

11/39

 $\overline{}$

² Dawson, Sun, and Wheeler. Computer Methods in Applied Mechanics and Engineering. 2004.

C. Poussel NTM 2023

 $\overline{\nabla}$

Rearrange the Discontinuous Galerkin formulation, assuming that $[K(x, \bar{u})u'_h]_{x_n} = 0$ and with penalization parameters σ_n :

$$\tilde{a}_h(u_h, v_h) = \sum_{n=0}^{N-1} \int_{I_n} K(x, \bar{u}) u'_h v'_h dx - \sum_{n=0}^{N-1} \left[K(x, \bar{u}) u'_h v_h \right]_{x_h^+}^{x_{n+1}^-}$$

C. Poussel NTM 2023

 $\overline{\nabla}$

²Dawson, Sun, and Wheeler. Computer Methods in Applied Mechanics and Engineering. 2004.

Rearrange the Discontinuous Galerkin formulation, assuming that $[K(x, \bar{u})u'_h]_{x_n} = 0$ and with penalization parameters σ_n :

$$\tilde{a}_h(u_h, v_h) = \sum_{n=0}^{N-1} \int_{I_n} K(x, \bar{u}) u'_h v'_h dx - \sum_{n=0}^N \llbracket K(x, \bar{u}) u'_h v_h \rrbracket_{x_n}$$

with $[\![ab]\!] = [\![a]\!]\{\![b]\!] + \{\![a]\!][\![b]\!]$

 ∇

12/39

² Dawson, Sun, and Wheeler. Computer Methods in Applied Mechanics and Engineering. 2004.

Rearrange the Discontinuous Galerkin formulation, assuming that $[K(x, \bar{u})u'_h]_{x_n} = 0$ and with penalization parameters σ_n :

$$\tilde{a}_h(u_h, v_h) = \sum_{n=0}^{N-1} \int_{I_n} K(x, \bar{u}) u'_h v'_h dx - \sum_{n=0}^N \{\!\!\{K(x, \bar{u})u'_h\}\!\}_{x_n} [\!\!\{v_h]\!\!\}_{x_n}$$

with $[\![ab]\!] = [\![a]\!]\{\![b]\!] + \{\![a]\!][\![b]\!]$

 ∇

12/39

²Dawson, Sun, and Wheeler. Computer Methods in Applied Mechanics and Engineering. 2004.

Rearrange the Discontinuous Galerkin formulation, assuming that $[K(x, \bar{u})u'_h]_{x_n} = 0$ and with penalization parameters σ_n :

$$\begin{split} \tilde{a}_{h}(u_{h},v_{h}) &= \sum_{n=0}^{N-1} \int_{I_{n}} K(x,\bar{u}) u_{h}' v_{h}' dx - \sum_{n=0}^{N} \{\!\!\{K(x,\bar{u})u_{h}'\}\!\!\}_{x_{n}}[\![v_{h}]\!]_{x_{n}} \\ &+ \sum_{n=1}^{N-1} \frac{\sigma_{n-1} + \sigma_{n}}{2h} [\![u_{h}]\!]_{x_{n}}[\![v_{h}]\!]_{x_{n}} + \end{split}$$

C. Poussel NTM 2023

 $\overline{\nabla}$

² Dawson, Sun, and Wheeler. Computer Methods in Applied Mechanics and Engineering. 2004.

Rearrange the Discontinuous Galerkin formulation, assuming that $[K(x, \bar{u})u'_h]_{x_n} = 0$ and with penalization parameters σ_n :

$$\begin{split} \tilde{a}_{h}(u_{h},v_{h}) &= \sum_{n=0}^{N-1} \int_{I_{n}} K(x,\bar{u}) u_{h}' v_{h}' dx - \sum_{n=0}^{N} \{\!\!\{K(x,\bar{u})u_{h}'\}\!\!\}_{x_{n}} [\!\![v_{h}]\!\!]_{x_{n}} \\ &+ \sum_{n=1}^{N-1} \frac{\sigma_{n-1} + \sigma_{n}}{2h} [\!\![u_{h}]\!\!]_{x_{n}} [\!\![v_{h}]\!\!]_{x_{n}} \\ &+ \frac{\sigma_{0}}{h} [\!\![u_{h}]\!]_{x_{0}} [\!\![v_{h}]\!]_{x_{0}} + \frac{\sigma_{N}}{h} [\!\![u_{h}]\!]_{x_{N}} [\!\![v_{h}]\!]_{x_{N}} \end{split}$$

C. Poussel NTM 2023

 ∇

² Dawson, Sun, and Wheeler. Computer Methods in Applied Mechanics and Engineering. 2004.

Rearrange the Discontinuous Galerkin formulation, assuming that $[K(x, \bar{u})u'_h]_{x_n} = 0$ and with penalization parameters σ_n :

$$\begin{split} \tilde{a}_{h}(u_{h},v_{h}) &= \sum_{n=0}^{N-1} \int_{I_{n}} K(x,\bar{u}) u_{h}' v_{h}' dx - \sum_{n=0}^{N} \{\!\!\{K(x,\bar{u})u_{h}'\}\!\!\}_{x_{n}} [\!\![v_{h}]\!\!]_{x_{n}} \\ &+ \sum_{n=1}^{N-1} \frac{\sigma_{n-1} + \sigma_{n}}{2h} [\!\![u_{h}]\!\!]_{x_{n}} [\!\![v_{h}]\!\!]_{x_{n}} \\ &+ \frac{\sigma_{0}}{h} [\!\![u_{h}]\!]_{x_{0}} [\!\![v_{h}]\!]_{x_{0}} + \frac{\sigma_{N}}{h} [\!\![u_{h}]\!]_{x_{N}} [\!\![v_{h}]\!]_{x_{N}} \end{split}$$
and

$$l_h(v_h) = \int_{\Omega} f v_h dx$$

C. Poussel NTM 2023

² Dawson, Sun, and Wheeler. Computer Methods in Applied Mechanics and Engineering. 2004.

 ∇

The discrete linearized problem $(\tilde{\mathcal{V}}_h)$ can now be defined:

$$(\tilde{\mathcal{V}}_h)$$
 { Find $u_h \in V_h^p$ such that, $\tilde{a}_h(u_h, v_h) = l_h(v_h), \forall v_h \in V_h^p$

13/39

V

The discrete linearized problem $(ilde{\mathcal{V}}_h)$ can now be defined:

$$(\tilde{\mathcal{V}}_h) \left\{ \text{ Find } u_h \in V_h^p \text{ such that, } \tilde{a}_h(u_h, v_h) = l_h(v_h), \ \forall v_h \in V_h^p \right\}$$

Assuming that

13/39

$$(\mathcal{H}_h) \begin{cases} \exists K_0^{(n)}, K_1^{(n)} \in \mathbb{R}_+^*, \ \forall x \in I_n, \ K_0^{(n)} \le K(x, \bar{u}) \le K_1^{(n)} \\ \text{and} \ K_0 := \min_n K_0^{(n)} \text{ and} \ K_1 := \max_n K_1^{(n)} \end{cases}$$

V

Lemma (Existence and uniqueness of the discrete solution for the linearized discrete problem $(\tilde{\mathcal{V}}_h)$)

Consider $\bar{u} \in V_h^p$, then $\exists ! u_h \in V_h^p$ such that $\tilde{a}_h(u_h, v_h) = l_h(v_h), \ \forall v_h \in V_h^p$

14/39

Lemma (Existence and uniqueness of the discrete solution for the linearized discrete problem $(\tilde{\mathcal{V}}_h)$)

Consider $\bar{u} \in V_h^p$, then $\exists ! u_h \in V_h^p$ such that $\tilde{a}_h(u_h, v_h) = l_h(v_h), \ \forall v_h \in V_h^p$

• Proof with Lax-Milgram theorem.

14/39

Lemma (Existence and uniqueness of the discrete solution for the linearized discrete problem $(\tilde{\mathcal{V}}_h)$)

Consider $\bar{u} \in V_h^p$, then $\exists ! u_h \in V_h^p$ such that $\tilde{a}_h(u_h, v_h) = l_h(v_h), \ \forall v_h \in V_h^p$

• Proof with Lax-Milgram theorem.

We associate V_h^p with the norm:

$$\|v\|^2 = \sum_{n=0}^{N-1} \|v'\|_{I_n}^2 + \sum_{n=0}^N \frac{1}{h} \|v\|_{x_n}^2 = \sum_{n=0}^{N-1} \|v'\|_{I_n}^2 + |v|_J^2$$

Where $\|\cdot\|_{I_n}$ is the usual norm $L^2(I_n)$ and $|v|_J^2 := \sum_{n=0}^N \frac{1}{h} [\![v]\!]_{x_n}^2$ is the jump semi-norm.

C. Poussel NTM 2023

14/39

A

Following the work of Epshteyn and Rivière³ we are able to prove

Lemma (Discrete coercivity of \tilde{a}_h)

For any vector of positive numbers $\epsilon = (\varepsilon^{(n)})_n$ and $\alpha > 0$, there exists a constant $C^*(\alpha, \epsilon) > 0$ such that $\forall u_h \in V_h^p$, $\tilde{a}_h(u_h, u_h) \ge C^*(\alpha, \epsilon) \|u_h\|^2$

C. Poussel NTM 2023

³Epshteyn and Rivière. Journal of Computational and Applied Mathematics. 2007.

Following the work of Epshteyn and Rivière³ we are able to prove

Lemma (Discrete coercivity of \tilde{a}_h)

For any vector of positive numbers $\epsilon = (\varepsilon^{(n)})_n$ and $\alpha > 0$, there exists a constant $C^*(\alpha, \epsilon) > 0$ such that $\forall u_h \in V_h^p$, $\tilde{a}_h(u_h, u_h) \ge C^*(\alpha, \epsilon) \|u_h\|^2$

Lemma (Discrete continuity of \tilde{a}_h)

For any vector of positive numbers $\epsilon = (\varepsilon^{(n)})_n$ and $\alpha > 0$, there exists a constant $\tilde{C}(\alpha, \epsilon) > 0$ such that $\forall u_h, v_h \in V_h^p$, $|\tilde{a}_h(u_h, v_h)| \leq \tilde{C}(\alpha, \epsilon) ||u_h|| ||v_h||$

C. Poussel NTM 2023

³Epshteyn and Rivière. Journal of Computational and Applied Mathematics. 2007.

₹

Following the work of Epshteyn and Rivière³ we are able to prove

Lemma (Discrete coercivity of \tilde{a}_h)

For any vector of positive numbers $\epsilon = (\varepsilon^{(n)})_n$ and $\alpha > 0$, there exists a constant $C^*(\alpha, \epsilon) > 0$ such that $\forall u_h \in V_h^p$, $\tilde{a}_h(u_h, u_h) \ge C^*(\alpha, \epsilon) \|u_h\|^2$

Lemma (Discrete continuity of \tilde{a}_h)

For any vector of positive numbers $\epsilon = (\varepsilon^{(n)})_n$ and $\alpha > 0$, there exists a constant $\tilde{C}(\alpha, \epsilon) > 0$ such that $\forall u_h, v_h \in V_h^p, \ |\tilde{a}_h(u_h, v_h)| \leq \tilde{C}(\alpha, \epsilon) ||u_h|| \, ||v_h||$

Lemma (Discrete continuity of l_h)

There exists a constant B > 0 such that $\forall v_h \in V_h^p, |l_h(v_h)| \le B ||v_h||$.

³Epshteyn and Rivière. Journal of Computational and Applied Mathematics. 2007.

Proofs give us :

• lower bounds for penalization parameters

 $\begin{cases} \forall n, \ \varepsilon^{(n)} < 2, \ \sigma_n = \alpha \sigma_n^* \\ \text{with } \alpha > 1 \end{cases} \quad \text{with} \quad \begin{cases} \forall n \in \{1, \dots, N-1\}, \\ \sigma_n^* = \frac{(K_1^{(n)} C_{tr})^2}{2\varepsilon^{(n)} K_0^{(n)}}; \\ \sigma_0^* = \frac{(K_1^{(0)} C_{tr})^2}{\varepsilon^{(0)} K_0^{(0)}}; \\ \sigma_N^* = \frac{(K_1^{(N-1)} C_{tr})^2}{\varepsilon^{(N-1)} K_0^{(N-1)}}. \end{cases}$

C. Poussel NTM 2023

16/39

Proofs give us :

• lower bounds for penalization parameters

$$\begin{cases} \forall n, \ \varepsilon^{(n)} < 2, \ \sigma_n = \alpha \sigma_n^* \\ \text{with } \alpha > 1 \end{cases} \quad \text{with} \quad \begin{cases} \forall n \in \{1, \dots, N-1\}, \\ \sigma_n^* = \frac{(K_1^{(n)} C_{tr})^2}{2\varepsilon^{(n)} K_0^{(n)}}; \\ \sigma_0^* = \frac{(K_1^{(0)} C_{tr})^2}{\varepsilon^{(0)} K_0^{(0)}}; \\ \sigma_N^* = \frac{(K_1^{(N-1)} C_{tr})^2}{\varepsilon^{(N-1)} K_0^{(N-1)}}. \end{cases}$$

C. Poussel

NTM 2023

1

• Expressions for $C^*(\alpha,\epsilon)$ and $\tilde{C}(\alpha,\epsilon)$

Following the work of Di Pietro and Ern published in 2011⁴

Theorem (Convergence to minimal regularity solutions)

Let $p \geq 1$, u_h be a sequence of approximate solutions generated by solving the discrete linearized problem $(\tilde{\mathcal{V}}_h)$ with penalty parameters ensuring coercivity. Then as $h \to 0$

$$u_h \longrightarrow u$$
 strongly in $L^2(\Omega)$
 $u'_h \longrightarrow u'$ strongly in $L^2(\Omega)$
 $|u_h|_J \rightarrow 0$

where $u \in H_0^1(\Omega)$ is the unique solution of the problem $(\tilde{\mathcal{V}})$.

17/39

 $\overline{\mathbf{v}}$

⁴ Di Pietro and Ern. 2011-11-03.

- Found lower bounds for penalization parameters σ_n

- Found lower bounds for penalization parameters σ_n
- Can't consider σ_n as big as possible.
 - \blacktriangleright Projection matrix condition number link to σ_n

- Found lower bounds for penalization parameters σ_n
- Can't consider σ_n as big as possible.
 - \blacktriangleright Projection matrix condition number link to σ_n
- Optimal values for σ_n ?

18/39

7

- Found lower bounds for penalization parameters σ_n
- Can't consider σ_n as big as possible.
 - \blacktriangleright Projection matrix condition number link to σ_n
- Optimal values for σ_n ?
- Céa's lemma links C^* and $ilde{C}$ to the approximation error

C. Poussel

NTM 2023

18/39

A

Lemma (Céa's lemma)

Let $u \in H_0^1(\Omega)$ be the solution of $(\tilde{\mathcal{V}})$ and u_h the solution of $(\tilde{\mathcal{V}}_h)$ then $\forall v \in H_0^1(\Omega)$ we have :

$$||u-u_h|| \le \gamma ||u-v||,$$

with
$$\gamma(\alpha,\epsilon) = \frac{\hat{C}(\alpha,\epsilon)}{C^*(\alpha,\epsilon)}$$

19/39

Lemma (Céa's lemma)

Let $u \in H_0^1(\Omega)$ be the solution of $(\tilde{\mathcal{V}})$ and u_h the solution of $(\tilde{\mathcal{V}}_h)$ then $\forall v \in H_0^1(\Omega)$ we have :

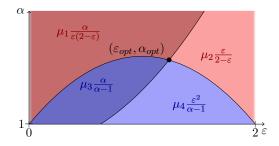
$$|u-u_h|| \le \gamma ||u-v||,$$

with
$$\gamma(\alpha,\epsilon) = \frac{C(\alpha,\epsilon)}{C^*(\alpha,\epsilon)}$$

 $\overline{\nabla}$

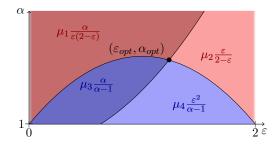
• Find values for α and ε such that \tilde{a}_h is coercive, continue and $\gamma(\alpha,\varepsilon)$ is minimal

In the case of $\varepsilon^{(n)} = \varepsilon$, $\forall n$ and a certain configuration we seek min of these functions:



C. Poussel

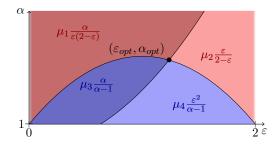
In the case of $\varepsilon^{(n)} = \varepsilon$, $\forall n$ and a certain configuration we seek min of these functions:



- We find $(\alpha_{opt}, \varepsilon_{opt}) \in]1, +\infty[\times]0, 2[$ such that γ is minimal

20/39

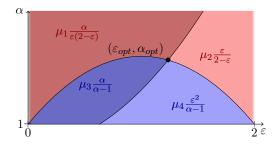
In the case of $\varepsilon^{(n)} = \varepsilon$, $\forall n$ and a certain configuration we seek min of these functions:



C. Poussel

- We find $(\alpha_{opt}, \varepsilon_{opt}) \in]1, +\infty[\times]0, 2[$ such that γ is minimal
- $lpha_{opt}$ and $arepsilon_{opt}$ are function of K_0 and K_1

In the case of $\varepsilon^{(n)}=\varepsilon, \; \forall n \text{ and a certain configuration we seek min of these functions:}$



- We find $(\alpha_{opt}, \varepsilon_{opt}) \in]1, +\infty[\times]0, 2[$ such that γ is minimal
- $lpha_{opt}$ and $arepsilon_{opt}$ are function of K_0 and K_1

 $\overline{\nabla}$

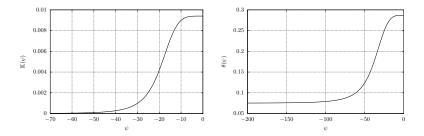
• We can now find automatically penalization parameters with

$$\sigma_n = \alpha_{opt} \sigma_n^*(\varepsilon_{opt})$$

C. Poussel

- Problem based on physical experiment⁵
- Infiltration in soil
- Modeled by Richards' equation using Vachaud's⁶ relations

- Problem based on physical experiment⁵
- Infiltration in soil
- Modeled by Richards' equation using Vachaud's⁶ relations



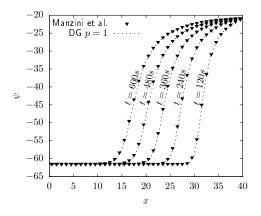
C. Poussel

- Problem based on physical experiment⁵
- Infiltration in soil
- Modeled by Richards' equation using Vachaud's⁶ relations

$$\begin{aligned} & \operatorname{Find} \psi(x,t) : [0,40] \times [0,T] \longrightarrow \mathbb{R} \text{ such that} \\ & \left\{ \begin{aligned} & \partial_t \theta(\psi) - \partial_x(\mathbb{K}(\psi)) \partial_x(\psi+x)) = 0 & , \text{ in }]0,40[\times[0,T]] \\ & \psi(z,0) = -61.5 & , \text{ in }]0,40[\\ & \psi(0,t) = -61.5 & , \text{ in } [0,T] \\ & \psi(40,t) = -20.7 & , \text{ in } [0,T] \end{aligned} \right\} \end{aligned} \right\}^{40 \ cm} \end{aligned}$$

- Piecewise linear approximation, $\Delta x=1$
- Time integration with backward Euler method

7



Good agreement with Manzini et al.⁷ VF methods •

⁷ Manzini and Ferraris. Advances in Water Resources. 2004-12.

 $\overline{}$

 $\overline{\gamma}$

Haverkamp's test case

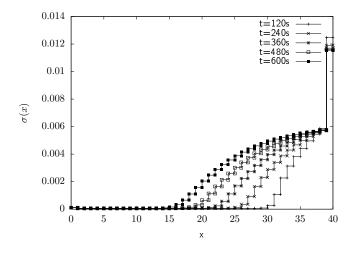


Figure: Penalization parameters plot for the numerical solution

C. Poussel

- Addressed the problem of penalization parameters values
 - Auto calibrated
 - Not increase condition number
 - Minimize error

24/39

- Addressed the problem of penalization parameters values
 - Auto calibrated
 - Not increase condition number
 - Minimize error
- Proved that the whole loop of resolution converges to the unique weak solution

C. Poussel

NTM 2023

24/39

 $\overline{\mathbf{A}}$

- Addressed the problem of penalization parameters values
 - Auto calibrated
 - Not increase condition number
 - Minimize error
- Proved that the whole loop of resolution converges to the unique weak solution
- Developed a one dimensional code and validated it
- \Rightarrow Implement auto calibration of penalization parameters in 2D and 3D

C. Poussel

NTM 2023

 \overline{A}

1 Generic non-linear elliptic problem

2 Non-linear Hyperbolic problem

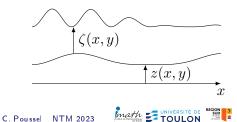
$$\begin{cases} \partial_t \begin{pmatrix} \zeta \\ q_x \\ q_y \end{pmatrix} + \nabla \cdot \begin{pmatrix} \frac{q_x}{\zeta} & q_y \\ \frac{q_x^2}{\zeta} + g\frac{\zeta^2}{2} & \frac{q_xq_y}{\zeta} \\ \frac{q_xq_y}{\zeta} & \frac{q_y^2}{\zeta} + g\frac{\zeta^2}{2} \end{pmatrix} = \begin{pmatrix} 0 \\ -g\zeta\partial_x z \\ -g\zeta\partial_y z \end{pmatrix} \text{ in } \Omega \times]0, T[,]$$

Initial and Boundary conditions,

• Depth-averaged incompressible Navier-Stokes Equations

 $\overline{\nabla}$

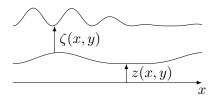
• Hyperbolic system



$$\begin{cases} \partial_t U + \nabla \cdot \mathbb{G}(U) = \mathbb{S}(U, z) \text{ in } \Omega \times]0, T[, \\ \text{Initial and Boundary conditions,} \end{cases}$$

C. Poussel

- Depth-averaged incompressible Navier-Stokes Equations
- Hyperbolic system



Space discretization: the mesh \mathcal{E}_h

7

- Unstructured mesh
- Non conformal mesh
- Mesh adaptation along calculation

Adaptation criterion:

• $\nabla \zeta$

27/39

• Production of numerical entropy

Solution space: $V_h^p = \{v \in H_0^1(\Omega) \mid \forall I_n \in \mathcal{E}_h, v_{|I_n} \in \mathbb{P}_p(I_n)\}$ the set of piecewise polynomials functions

- p = 0 Finite volume methods: piecewise constant
- p=1 Piecewise linear and so on

Solution space: $V_h^p = \{v \in H_0^1(\Omega) \mid \forall I_n \in \mathcal{E}_h, v_{|I_n} \in \mathbb{P}_p(I_n)\}$ the set of piecewise polynomials functions

- p = 0 Finite volume methods: piecewise constant
- p=1 Piecewise linear and so on

Find
$$U_h := (\zeta_h, (q_x)_h, (q_y)_h) \in [V_h^p(E)]^3$$
 such that $\forall t \in]0, T[,$

$$\begin{cases} \partial_t U_h + \nabla \cdot \mathbb{G}(U_h) = \mathbb{S}(U_h, z_h), \\ \text{Initial and Boundary conditions,} \end{cases}$$

C. Poussel

Solution space: $V_h^p = \{v \in H_0^1(\Omega) \mid \forall I_n \in \mathcal{E}_h, v_{|I_n} \in \mathbb{P}_p(I_n)\}$ the set of piecewise polynomials functions

- p = 0 Finite volume methods: piecewise constant
- p=1 Piecewise linear and so on

Find
$$U_h := (\zeta_h, (q_x)_h, (q_y)_h) \in [V_h^p(E)]^3$$
 such that $\forall t \in]0, T[, \forall \varphi_h \in [V_h^p(E)]^3$ and

$$\begin{cases} \varphi_h \partial_t U_h + \varphi_h \nabla \cdot \mathbb{G}(U_h) = \varphi_h \mathbb{S}(U_h, z_h), \\ \text{Initial and Boundary conditions,} \end{cases}$$

Solution space: $V_h^p = \{v \in H_0^1(\Omega) \mid \forall I_n \in \mathcal{E}_h, v_{|I_n} \in \mathbb{P}_p(I_n)\}$ the set of piecewise polynomials functions

- p = 0 Finite volume methods: piecewise constant
- p=1 Piecewise linear and so on

Find
$$U_h := (\zeta_h, (q_x)_h, (q_y)_h) \in [V_h^p(E)]^3$$
 such that $\forall t \in]0, T[, \forall \varphi_h \in [V_h^p(E)]^3$ and $\forall E \in \mathcal{E}_h$

$$\begin{cases} \int_E \varphi_h \partial_t U_h + \int_E \varphi_h \nabla \cdot \mathbb{G}(U_h) = \int_E \varphi_h \mathbb{S}(U_h, z_h),\\ \text{Initial and Boundary conditions,} \end{cases}$$

Solution space: $V_h^p = \{v \in H_0^1(\Omega) \mid \forall I_n \in \mathcal{E}_h, v_{|I_n} \in \mathbb{P}_p(I_n)\}$ the set of piecewise polynomials functions

- p = 0 Finite volume methods: piecewise constant
- p=1 Piecewise linear and so on

Find
$$U_h := (\zeta_h, (q_x)_h, (q_y)_h) \in [V_h^p(E)]^3$$
 such that $\forall t \in]0, T[, \ \forall \varphi_h \in [V_h^p(E)]^3$ and $\forall E \in \mathcal{E}_h$

$$\begin{cases} \int_{E} \varphi_{h} \partial_{t} U_{h} - \int_{E} \nabla \varphi_{h} : \mathbb{G}(U_{h})^{T} + \sum_{F \in \mathcal{F}_{h}^{E}} \int_{F} \varphi_{h} \hat{G}_{F}(U_{h}) = \int_{E} \varphi_{h} \mathbb{S}(U_{h}, z_{h}) \\ \\ \text{Initial condition} \end{cases}$$

28/39

Time discretization

 $U_h|_E$ and φ_h linear combination of polynomial: $\forall (x,y), t \in E \times]0,T]$

$$U_h|_E(x,y,t) = oldsymbol{\Phi}(x,y) \cdot oldsymbol{\mathrm{U}}_E(t)$$
 and $arphi_h(x,y) = oldsymbol{\Phi}(x,y)$

$$\underbrace{\int_{E} \mathbf{\Phi} \otimes \mathbf{\Phi}}_{\mathbb{M}_{E}} \underbrace{\frac{d\mathbf{U}_{E}}{dt}}_{\mathbb{M}_{E}} = \underbrace{\int_{E} \nabla \mathbf{\Phi} : \mathbb{G}(U_{h})^{t} - \sum_{F \in \mathcal{F}_{h}^{E}} \int_{F} \mathbf{\Phi} \hat{G}_{F}(U_{h}) + \int_{E} \mathbf{\Phi} \mathbb{S}(U_{h}, z_{h})}_{\mathcal{H}_{E}(U_{h}(t))}$$

C. Poussel NTM 2023

29/39

Time discretization

$$\mathbb{M}_E \frac{d\mathbf{U}_E}{dt} = \mathcal{H}_E(U_h(t))$$

Explicit Runge-Kutta method of order q = p + 1:

• Δt chosen according to CFL condition linked to⁸

$$\max_{E \in \mathcal{E}_h} (\frac{\lambda_E}{h_E}) \Delta t \le \frac{1}{2p+1}$$

C. Poussel

NTM 2023

Legendre basis makes mass matrix diagonal and ease analytical calculus

 $\overline{\nabla}$

⁸Cockburn and Shu. Mathematics of Computation. 1989.

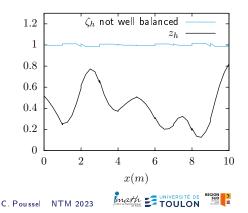
Well balanced property

Solving Shallow Water equation with the previous RKDG method does not preserve equilibrium states:

• $\zeta + z \equiv C$ a constant and $\mathbf{q} \equiv 0$

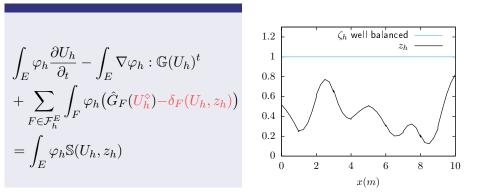
- ζ_h and z_h in V_h^p admit jumps at elements' interfaces
- Bathymetry is defined as solution, on each elements
- Numerical fluxes no longer equal to zero

 $\overline{\nabla}$



Hydrostatic reconstruction

Variational formulation modified 9 such that interfaces flux cancels out if $\zeta+z\equiv C$



C. Poussel

NTM 2023

⁹Ern, Piperno, and Djadel. International Journal for Numerical Methods in Fluids. 2007.

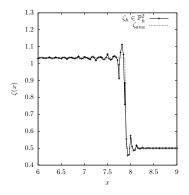
 ∇

31/39

Moment limiting

Spurious oscillations around discontinuities, due to:

- Hyperbolic problem
- High order scheme (p > 0)

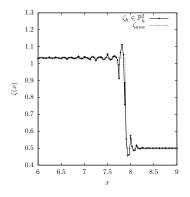


Moment limiting

Spurious oscillations around discontinuities, due to:

 $\overline{}$

- Hyperbolic problem
- High order scheme (p > 0)



32/39

• Post processing

C. Poussel

NTM 2023

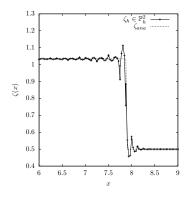
• Well suited for non conformal mesh

Moment limiting

Spurious oscillations around discontinuities, due to:

 ∇

- Hyperbolic problem
- High order scheme (p > 0)



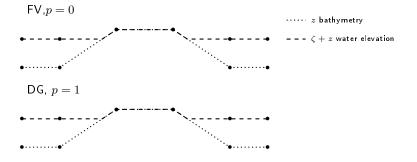
- Post processing
- Well suited for non conformal mesh

For each element^a:

- 1. Estimate n-th derivative with (n-1)-th derivative of surrounding elements
- 2. Minmod comparison with the computed *n*-th derivative of the element

^aKrivodonova. Journal of Computational Physics. 2007-09.

 \Rightarrow Need to preserve positivity of water depth

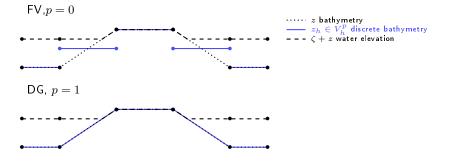


C. Poussel

NTM 2023

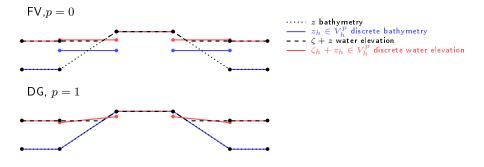
33/39 -----

 \Rightarrow Need to preserve positivity of water depth



C. Poussel NTM 2023

 \Rightarrow Need to preserve positivity of water depth

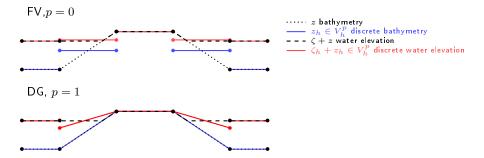


- Semi-dry cells in DG, p=1

C. Poussel NTM 2023

33/39

 \Rightarrow Need to preserve positivity of water depth



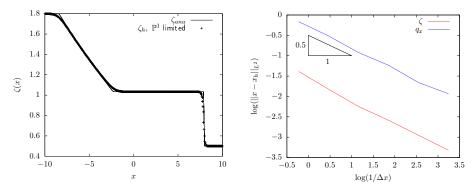
C. Poussel

- Semi-dry cells in DG, p=1
- \Rightarrow Use of post processing to treat dry cells and semi-dry cells

 $\overline{\nabla}$

Numerical results

1D Dam-Break



C. Poussel

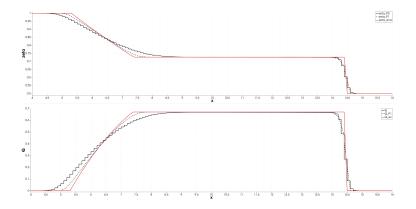
Figure: Water depth $\zeta_h \in \mathbb{P}^1_h$ compared with ζ_{ana}

Figure: $L^2\text{-}\mathrm{errors}$ on $U_h\in \mathbb{P}^2_h$ with moment limiter

NTM 2023

34/39

- Comparison between $p=0 \mbox{ and } p=1$ limited for the same amount of degrees of freedom



- \Rightarrow Same precision around choc area
- \Rightarrow Better contact discontinuity definition

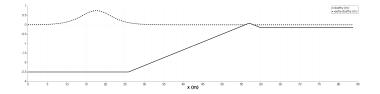
A

C. Poussel NTM 2023

Solitary wave propagation over a two-dimensional reef

Experimental test case over a typical reef configuration¹⁰

- 83.7m long and $h_0 = 2.5m$ deep channel
- 1/12 reef slope with a crest 0.065m above water level



- Piecewise cubic approximation (p=3), Runge Kutta method of order 4
- 500 elements, $\Delta x = 0.1674$

¹⁰Roeber, Cheung, and Kobayashi. Coastal Engineering. 2010.

- Solve Shallow Water Equations with RKDG methods
- Ensure well balanced property
- Cancel spurious oscillations on a non-conformal and unstructured mesh
- Solve flooding and drying problem

Elliptic

- Auto-calibration of penalization parameters
- Converges to the unique weak solution

Hyperbolic

- Ensure well balanced property
- Moment limiting and positive depth operator

- Implement auto-calibration of penalization parameters in higher dimensions
- Asymptotic model coupling Richards' equation and Shallow Water Equations

C. Poussel NTM 2023

