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Motivation

• Model behavior of water over and in a porous medium

⇒ Better understanding erosion and �ooding phenomenon
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Motivation

• Clément in 20211 developed RIVAGE, a Discontinuous Galerkin solver

for Richards' equation

⇒ Addressed the �ow of water in the porous medium

⇒ One way coupling

• Implement in RIVAGE a DG solver for a free surface model

⇒ Two way coupling

1Clément et al. Advances in Water Resources. 2021.
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Governing equations

Shallow Water Equations
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 in Ω×]0, T [,

Initial and Boundary conditions,

• Depth-averaged incompressible Navier-Stokes Equations2

• Hyperbolic system

2Saint-Venant. 1871.
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Governing equations

Shallow Water Equations

{
∂tU +∇ ·G(U) = S(U, z) in Ω×]0, T [,

Initial and Boundary conditions,

• U := (ζ,q) : Ω× [0, T [→ R3

conservatives variables

• z bathymetry
x

z(x, y)

ζ(x, y)
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Runge-Kutta Discontinuous Galerkin methods

Discontinuous Galerkin methods

• Based on a variational formulation as in Finite Element Methods

(FEM)

• Designed in an element-wise way as in Finite Volume Methods (FVM)

Motivation

• Local method: mesh and order

adaptation

• Designed to easily increase

approximation order

Drawbacks with SWE

• Spurious oscillations

• Shore line de�nition

• High number of degrees of

freedom
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Runge-Kutta Discontinuous Galerkin methods Space & Time discretization

Space discretization: the mesh Eh

• Unstructured mesh

• Non conformal mesh

• Mesh adaptation along

calculation

Adaptation criterion:

• ∇ζ • Production of numerical entropy
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Runge-Kutta Discontinuous Galerkin methods Space & Time discretization

Space discretization: variational formulation

Solution space: Pp
h the set of piecewise polynomials functions

• p = 0 Finite volume methods: piecewise constant

• p = 1 Piecewise linear and so on

Find Uh := (ζh, (qx)h, (qy)h) ∈ [Pp
h(E)]3 such that

∀t ∈]0, T [, ∀E ∈ Eh and ∀φh ∈ [Pp
h(E)]3

{
∂tUh +∇ ·G(Uh) = S(Uh, zh),

Initial and Boundary conditions,
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Runge-Kutta Discontinuous Galerkin methods Space & Time discretization

Space discretization: variational formulation
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h the set of piecewise polynomials functions

• p = 0 Finite volume methods: piecewise constant

• p = 1 Piecewise linear and so on

Find Uh := (ζh, (qx)h, (qy)h) ∈ [Pp
h(E)]3 such that

∀t ∈]0, T [, ∀E ∈ Eh and ∀φh ∈ [Pp
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
∫
E
φh∂tUh −

∫
E
∇φh : G(Uh)

T +
∑

F∈FE
h

∫
F
φhĜF (Uh) =

∫
E
φhS(Uh, zh)

Initial condition
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Runge-Kutta Discontinuous Galerkin methods Space & Time discretization

Time discretization

Uh|E and φh linear combination of polynomial: ∀(x, y), t ∈ E×]0, T ]

Uh|E(x, y, t) = Φ(x, y) ·UE(t) and φh(x, y) = Φ(x, y)

∫
E
Φ⊗Φ︸ ︷︷ ︸
ME

dUE

dt
=

∫
E
∇Φ : G(Uh)

t −
∑

F∈FE
h

∫
F
ΦĜF (Uh) +

∫
E
ΦS(Uh, zh)

︸ ︷︷ ︸
HE(Uh(t))
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Runge-Kutta Discontinuous Galerkin methods Space & Time discretization

Time discretization

ME
dUE

dt
= HE(Uh(t))

Explicit Runge-Kutta method of order q = p+ 1:

• ∆t chosen according to CFL condition linked to

▶ polynomial order p
▶ eigenvalues of the problem

▶ the mesh

Polynomial basis a�ect the shape of mass matrix
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Runge-Kutta Discontinuous Galerkin methods Well balanced property

Well balanced property

Solving Shallow Water equation with the previous RKDG method does not

preserve equilibrium states:

• ζ + z ≡ C a constant and q ≡ 0

• ζh and zh in Pp
h admit jumps at

elements' interfaces

• Numerical �uxes no longer

equal to zero
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Runge-Kutta Discontinuous Galerkin methods Well balanced property

Hydrostatic reconstruction

Variational formulation modi�ed2 such that interfaces �ux cancels out if

ζ + z ≡ C

∫
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∂Uh

∂t
−
∫
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t

+
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2Ern, Piperno, and Djadel. International Journal for Numerical Methods in Fluids. 2007.
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Runge-Kutta Discontinuous Galerkin methods Limiting procedure

Moment limiting

Spurious oscillations around discontinuities, due to:

• Hyperbolic problem

• High order scheme (p > 0)
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• Post processing

• Well suited for non conformal mesh

For each elementa:

1. Estimate n-th derivative with (n− 1)-th
derivative of surrounding elements

2. Minmod comparison with the computed

n-th derivative of the element

aKrivodonova. Journal of Computational Physics. 2007-09.
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Numerical results

1D Dam-Break
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Figure: Water depth ζh ∈ P1
h compared

with ζana
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Numerical results

1D Dam-Break
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Figure: Zoom on solution discontinuity

with di�erent computation methods
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Figure: L2-errors on Uh ∈ P2
h with

moment limiter
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Numerical results

2D Dam-Break with breach

Approximation of the solution with Uh ∈ P1
h and moment limiter3

3Delis and Katsaounis. Applied Mathematical Modelling. 2005-08.
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Numerical results

Solitary wave propagation over a three-dimensional reef

Three-dimensional reef based on laboratory experiments4

4Lynett et al. Coastal Engineering Proceedings. 2011.
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Numerical results

Solitary wave propagation over a three-dimensional reef

Approximation of the solution with Uh ∈ P1
h and moment limiter4

4Pons. Theses. 2018-12.
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Conclusions and Perspectives

• Solve Shallow Water Equations with RKDG methods

• Ensure well balanced property

• Cancel spurious oscillations on a non-conformal and unstructured mesh

• Solve �ooding and drying problem5

▶ Enhance the �ooding and drying method

▶ Implement moment limiting on triangular elements

▶ Strong coupling between Richards' equation and Shallow Water

Equations

5Lee and Lee. KSCE Journal of Civil Engineering. 2015.
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