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Motivations Shallow Water Equations with DG method Flooding and Drying treatment Numerical results Conclusions

• Model behavior of water over and in a porous medium

⇒ Better understanding erosion and �ooding phenomenon

2/16 C. Poussel TPFM 2024



Motivations Shallow Water Equations with DG method Flooding and Drying treatment Numerical results Conclusions

• Clément in 20211 developed RIVAGE, a Discontinuous Galerkin (DG) solver for
Richards' equation.
− One way coupling

• We implemented in 20232, in RIVAGE, a DG solver for Shallow Water Equations

⇒ Implement in RIVAGE a DG solver for Shallow Water Equations with dry areas
⇒ Two way coupling

1Clément et al. 2021
Advances in Water Resources.

2Poussel et al. 2023
.
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Governing equations

Shallow Water Equations (SWE) derived
from :

• Incompressible Navier Stokes

• Hydrostatic approximation

• Depth average{
∂th+ div (q) = 0,

∂tq+ div
(
q⊗q
h + gh2

2 I
)
= −gh∇zb,

with proper boundary and initial conditions.

⇒ Hyperbolic system
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• h : water height [m]

• zb : bathymetry elevation [m]

• ζ = h+ zb : free surface elevation [m]

• q = (qx, qy)
T : horizontal discharge [m2.s−1]
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Discontinues Galerkin formulation

• Based on a variational formulation as in Finite Element Methods (FEM)

• Designed in an element-wise way as in Finite Volume Methods (FVM)

Motivation

• Local method: mesh and order
adaptation

• Designed to easily increase
approximation order

Drawbacks with SWE

• Spurious oscillations

• Moving shoreline de�nition

• High number of degrees of freedom
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Discontinues Galerkin formulation

Discontinuous Galerkin (DG) space :

Vp(E) :=
{
v : Ω → R

∣∣ v|E ∈ Pp(E), ∀E ∈ E
}

• Set of piecewise polynomial functions
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Discontinues Galerkin formulation

Discontinuous Galerkin (DG) space :

Vp(E) :=
{
v : Ω → R

∣∣ v|E ∈ Pp(E), ∀E ∈ E
}

• Set of piecewise polynomial functions

Find U := (h,q) ∈ Vp(E) such that ∀t ∈]0, T [,
∀φ ∈ Vp(E) and ∀E ∈ E∫
E
φ∂tU−

∫
E
∂xiφGi(U) +

∑
F∈FE

∫
F
φĜF (U) =

∫
E
φS(U, zb)
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Moment limiting and Well-balanced property

Vectorial form of the DG SWE formulation:

Find U : [0, T ] → RNdof such that

∀t ∈ [0, T ], M
dU(t)
dt

= H(U(t), zb)

with M the mass matrix and H the DG
operator. M is bloc diagonal.

• Explicit Runge-Kutta method of order
p+ 1

⇒ CFL condition

• Preserve equilibrium states, e.g. lake at
rest

⇒ Modify the DG operator H to be
well-balanceda

• Cancel spurious oscillations

⇒ Moment limiting post-processingb

M
dU(t)
dt

= Λ
(
Hwb(U(t), zb)

)

aErn, Piperno, and Djadel. 2007
International Journal for Numerical Methods in Fluids.

bKrivodonova. 2007
Journal of Computational Physics.
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• Treat problem with dry area and moving shoreline

⇒ Dry ( ), wet ( ) and semi-dry elements ( )

• Loss of hyperbolicity when h < 0

7/16 C. Poussel TPFM 2024



Motivations Shallow Water Equations with DG method Flooding and Drying treatment Numerical results Conclusions

x

z

h

zb

ζ

• Typical situation of shoreline
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x

z

•
••

••
••

• • Typical situation of shoreline

• Project ζ and zb on the
piecewise linear basis

⇒ Elements are either wet ( ),
semi-dry ( ) and dry ( )

⇒ Loss of hyperbolicity on the
semi-dry element

8/16 C. Poussel TPFM 2024



Motivations Shallow Water Equations with DG method Flooding and Drying treatment Numerical results Conclusions

x

z

•
••

••
••

• • Typical situation of shoreline

• Project ζ and zb on the
piecewise linear basis

⇒ Elements are either wet ( ),
semi-dry ( ) and dry ( )

⇒ Loss of hyperbolicity on the
semi-dry element

8/16 C. Poussel TPFM 2024



Motivations Shallow Water Equations with DG method Flooding and Drying treatment Numerical results Conclusions

x

z

•
••

••

•

•

••

• Typical situation of shoreline

• Project ζ and zb on the
piecewise linear basis

⇒ Elements are either wet ( ),
semi-dry ( ) and dry ( )

⇒ Loss of hyperbolicity on the
semi-dry element

8/16 C. Poussel TPFM 2024



Motivations Shallow Water Equations with DG method Flooding and Drying treatment Numerical results Conclusions

Slope modi�cation

x

•

• •

•

•
•• •

• Modify the slope of the water surface
wihtout modifying the bathymetrya

• Modify discharge to be null on the
shoreline

⇒ No loss of hyperbolicity at the interface

× No more well balanced on the shoreline

× Introduce non physical �uid speed

aXing, Zhang, and Shu. 2010
Advances in Water Resources.
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P0-adaptation

x

•

• •

•

•
•• •

• Consider the solution piecewise
constant on the shoreline

⇒ No loss of hyperbolicity at the interface

× No more well balanced on the shoreline

× Introduce non physical �uid speed
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Ghost cells

x

•

• •

•

•
• •

• Virtually split the element on the
shoreline, introduce a ghost cell ( )

▶ The mesh is not modi�ed !
▶ The support of basis functions is

modi�ed

⇒ No loss of hyperbolicity at the interface

⇒ Well balanced on the shoreline

× Introduce non physical �uid speed
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Uni-dimensional - Carrier & Greenspan test case

Monochromatic wave running up and down on a beach plane3

3Carrier and Greenspan. 1958
Journal of Fluid Mechanics.

12/16 C. Poussel TPFM 2024



Motivations Shallow Water Equations with DG method Flooding and Drying treatment Numerical results Conclusions

Uni-dimensional - Carrier & Greenspan test case

Numerical solution with p = 1 and ∆x = 0.06m

12/16 C. Poussel TPFM 2024
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Uni-dimensional - Carrier & Greenspan test case

Comparison the recovered shoreline position
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Uni-dimensional - Carrier & Greenspan test case

Comparison the recovered shoreline position
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Uni-dimensional - Roeber test case

Solitary wave breaking over a two-dimensional reef3

−2.5

0 x

z

−0.14

25.9 28.25 3.95 25.6

Solid wall

3Roeber, Cheung, and Kobayashi. 2010
Coastal Engineering.
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Uni-dimensional - Roeber test case

Numerical solution with p = 1 and ∆x = 0.42m

13/16 C. Poussel TPFM 2024
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Bi-dimensional - Parabolic bowl test case

Two-dimensional axisymmetric phenomena3 with p = 1,
∆x = 100m and Slope Modi�cation

3Bunya et al. 2009
Computer Methods in Applied Mechanics and Engineering.
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Bi-dimensional - Parabolic bowl test case
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Bi-dimensional - Conical island test case

Solitary wave breaking over a three-dimensional reef3

3Roeber and Cheung. 2012
Coastal Engineering.
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Bi-dimensional - Conical island test case

Numerical solution with p = 1, ∆x = 0.42m and Slope Modi�cation
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• Solve Shallow Water equations with Discontinuous Galerkin discretization

• Solve problem with dry areas in one and two dimensions

• Implement and validate in three drying treatment

• Ghost Cell method performs better than usual methods

• Make coexisting adaptative mesh re�nement and drying treatment

⇒ Work on coupling Richards' equation and Shallow Water equations

16/16 C. Poussel TPFM 2024
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