

Discontinuous Galerkin method applied to Shallow Water Equations with flooding and drying treatment

C. Poussel¹, M. Ersoy¹, F. Golay¹

¹Université de Toulon, IMATH, EA 2137, 83957 La Garde, France

February 22, 2024

Topical Problems of Fluid Mechanics 2024

Motivations ●	Shallow Water Equations with DG method	Flooding and Drying treatment	Numerical results 0000	Conclusions 0

- Model behavior of water over and in a porous medium
- \Rightarrow Better understanding erosion and flooding phenomenon

-

Motivations ●	Shallow Water Equations with DG method	Flooding and Drying treatment	Numerical results	Conclusions 0
•	0000	00000	0000	0

- Clément in 2021¹ developed RIVAGE, a Discontinuous Galerkin (DG) solver for Richards' equation.
 - One way coupling
- We implemented in 2023², in RIVAGE, a DG solver for Shallow Water Equations
- $\Rightarrow\,$ Implement in RIVAGE a DG solver for Shallow Water Equations with dry areas $\Rightarrow\,$ Two way coupling

¹Clément et al. 2021 Advances in Water Resources. ²Poussel et al. 2023 2/16

Μ	ot				

Shallow Water Equations with DG method ●○○○ Flooding and Drying treatment

Governing equations

Shallow Water Equations (SWE) derived from :

- Incompressible Navier Stokes
- Hydrostatic approximation
- Depth average

$$\left(\begin{array}{c} \partial_t h + \mathsf{div}\left(\mathbf{q}\right) = 0, \\ \partial_t \mathbf{q} + \mathsf{div}\left(\frac{\mathbf{q} \otimes \mathbf{q}}{h} + \frac{gh^2}{2}\mathbb{I}\right) = -gh\nabla z_b, \end{array} \right)$$

with proper boundary and initial conditions.

 \Rightarrow Hyperbolic system

A

Shallow Water Equations with DG method ${\scriptstyle \bullet \circ \circ \circ}$

Flooding and Drying treatment

Numerical results 2000 Conclusions 0

Governing equations

Shallow Water Equations (SWE) derived from :

- Incompressible Navier Stokes
- Hydrostatic approximation
- Depth average

$$\left(\begin{array}{c} \partial_t h + \mathsf{div} \left(\mathbf{q} \right) = 0, \\ \partial_t \mathbf{q} + \mathsf{div} \left(\frac{\mathbf{q} \otimes \mathbf{q}}{h} + \frac{gh^2}{2} \mathbb{I} \right) = -gh\nabla z_b, \end{array} \right)$$

with proper boundary and initial conditions.

 \Rightarrow Hyperbolic system

- h : water height [m]
- z_b : bathymetry elevation [m]
- $\zeta = h + z_b$: free surface elevation [m]
- + $\mathbf{q}=(q_x,q_y)^T$: horizontal discharge $[m^2.s^{-1}]$

	Shallow Water Equations with DG method ○●○○	Flooding and Drying treatment	Numeric 0000
D'			

merical results

Conclusions 0

Discontinues Galerkin formulation

- Based on a variational formulation as in Finite Element Methods (FEM)
- Designed in an element-wise way as in Finite Volume Methods (FVM)

4/16

Shallow Water Equations with DG method ○●○○	Flooding and Dryi

Discontinues Galerkin formulation

- Based on a variational formulation as in Finite Element Methods (FEM)
- Designed in an element-wise way as in Finite Volume Methods (FVM)

C. Poussel

Motivation

- Local method: mesh and order adaptation
- Designed to easily increase approximation order

	Shallow Water Equations with DG method ○●○○	Flood
--	--	-------

Numerical results

Conclusions 0

Discontinues Galerkin formulation

- Based on a variational formulation as in Finite Element Methods (FEM)
- Designed in an element-wise way as in Finite Volume Methods (FVM)

Motivation

- Local method: mesh and order adaptation
- Designed to easily increase approximation order

Drawbacks with SWE

- Spurious oscillations
- Moving shoreline definition
- High number of degrees of freedom

V

Shallow Water Equations with DG method $\circ \circ \circ \circ$

Flooding and Drying treatment

Numerical results

Conclusions 0

Discontinues Galerkin formulation

Discontinuous Galerkin (DG) space :

$$\mathcal{V}^{p}(\mathcal{E}) := \left\{ v : \Omega \to \mathbb{R} \mid v_{|_{E}} \in \mathbb{P}^{p}(E), \ \forall E \in \mathcal{E} \right\}$$

• Set of piecewise polynomial functions

Shallow Water Equations with DG method ○○●○ Flooding and Drying treatment

Numerical results

Conclusions 0

SUD

NIVERSITÉ DE

math

Discontinues Galerkin formulation

Discontinuous Galerkin (DG) space :

$$\mathcal{V}^{p}(\mathcal{E}) := \left\{ v : \Omega \to \mathbb{R} \mid v_{|_{E}} \in \mathbb{P}^{p}(E), \ \forall E \in \mathcal{E} \right\}$$

• Set of piecewise polynomial functions

Find
$$\mathbf{U} := (h, \mathbf{q}) \in \mathcal{V}^p(\mathcal{E})$$
 such that $\forall t \in]0, T[$,
 $\forall \varphi \in \mathcal{V}^p(\mathcal{E})$ and $\forall E \in \mathcal{E}$
 $\int_E \varphi \partial_t \mathbf{U} - \int_E \partial_{x_i} \varphi \mathbf{G}_i(\mathbf{U}) + \sum_{F \in \mathcal{F}^E} \int_F \varphi \hat{G}_F(\mathbf{U}) = \int_E \varphi \mathbf{S}(\mathbf{U}, z_b)$

М				

Shallow Water Equations with DG method ○○○● Flooding and Drying treatment

umerical result

Conclusions 0

Moment limiting and Well-balanced property

Vectorial form of the DG SWE formulation:

Find $\mathcal{U}: [0,T] \to \mathbb{R}^{N_{dof}}$ such that $\forall t \in [0,T], \ \mathbb{M} \frac{d\mathcal{U}(t)}{dt} = \mathcal{H}(\mathcal{U}(t), z_b)$

with \mathbb{M} the mass matrix and \mathcal{H} the DG operator. \mathbb{M} is bloc diagonal.

- Explicit Runge-Kutta method of order p+1

 \Rightarrow CFL condition

Motivations O	Shallow Water Equations with DG method ○○●	Flooding and	l Drying treatment	Numerical results 0000	Conclusions O
Moment limiting	and Well-balanced property	1			
Vectoria	al form of the DG SWE formulation	• ו:	Preserve equilibr rest ⇒ Modify the	rium states, e.g. DG operator <i>H</i> to	lake at
Find	$\mathcal{U}:[0,T] o \mathbb{R}^{N_{dof}}$ such that		well-balance	d ^a	
$\forall t$	$\in [0,T], \ \mathbf{M} \frac{d\mathcal{U}(t)}{dt} = \mathcal{H}(\mathcal{U}(t), z_b)$	•	Cancel spurious	oscillations	

with \mathbb{M} the mass matrix and \mathcal{H} the DG operator. \mathbb{M} is bloc diagonal.

• Explicit Runge-Kutta method of order p+1

 \Rightarrow CFL condition

⇒ Moment limiting post-processing^D

$$\mathbb{M}\frac{d\mathcal{U}(t)}{dt} = \Lambda\Big(\mathcal{H}^{\mathsf{wb}}(\mathcal{U}(t), z_b)\Big)$$

^aErn, Piperno, and Djadel. 2007 International Journal for Numerical Methods in Fluids.

^b Krivodonova. 2007 Journal of Computational Physics.

Μ		ion	

- Treat problem with dry area and moving shoreline
 ⇒ Dry (□), wet (■) and semi-dry elements (■)
- Loss of hyperbolicity when h < 0

 ∇

7/16

Shallow 0000	Water	Equations	DG	

Numerical results

z

Shallow Water Equations with DG method

Flooding and Drying treatment

C. Poussel

TPFM 2024

Jumerical results

Conclusions 0

- Typical situation of shoreline
- Project ζ and z_b on the piecewise linear basis

 \forall

Shallow Water Equations with DG method 0000

Flooding and Drying treatment

lumerical results

Conclusions 0

- Typical situation of shoreline
- Project ζ and z_b on the piecewise linear basis
- ⇒ Elements are either wet (■), semi-dry (■) and dry (∟)

OULON

Shallow Water Equations with DG method 0000

Flooding and Drying treatment

Jumerical results

Conclusions 0

- Typical situation of shoreline
- Project ζ and z_b on the piecewise linear basis
- ⇒ Elements are either wet (■), semi-dry (■) and dry (∟)
- ⇒ Loss of hyperbolicity on the semi-dry element

UL ON

 \forall

	Shallow Water Equations with DG method	

Numerical results 0000 Conclusions 0

Slope modification

- Modify the slope of the water surface wihtout modifying the bathymetry^a
- Modify discharge to be null on the shoreline

^aXing, Zhang, and Shu. 2010 Advances in Water Resources.

TPFM 2024

C. Poussel

	Shallow Water 0000	Equations	DG method	
0	0000			

Numerical results 0000 Conclusions 0

Slope modification

- Modify the slope of the water surface wihtout modifying the bathymetry^a
- Modify discharge to be null on the shoreline
- \Rightarrow No loss of hyperbolicity at the interface

^aXing, Zhang, and Shu. 2010 Advances in Water Resources.

 \overline{A}

			Shallow 0000	Water	Equations		DG	method
--	--	--	-----------------	-------	-----------	--	----	--------

Numerical results 2000 Conclusions 0

Slope modification

- Modify the slope of the water surface wihtout modifying the bathymetry^a
- Modify discharge to be null on the shoreline
- \Rightarrow No loss of hyperbolicity at the interface
- imes No more well balanced on the shoreline
- imes Introduce non physical fluid speed

^aXing, Zhang, and Shu. 2010 Advances in Water Resources.

	Shallow Water Equations with DG method	Flooding and Drying treatment ○○○●○	Numerical results 0000
\mathbb{P}^0 - adaptation			

• Consider the solution piecewise constant on the shoreline

	Shallow Water Equations with DG method 0000	Flooding and Drying treatment ०००●०	Numerical result
\mathbb{P}^0 -adaptation			

• Consider the solution piecewise constant on the shoreline

 \Rightarrow No loss of hyperbolicity at the interface

 \square

	Shallow Water Equations with DG method	Flooding and Drying treatment ○○○●○
m0 adamtatian		

- Consider the solution piecewise constant on the shoreline
- $\begin{array}{l} \Rightarrow \ \, {\rm No} \ \, {\rm loss} \ \, {\rm of} \ \, {\rm hyperbolicity} \ \, {\rm at} \ \, {\rm the} \ \, {\rm interface} \\ \times \ \, {\rm No} \ \, {\rm more} \ \, {\rm well} \ \, {\rm balanced} \ \, {\rm on} \ \, {\rm the} \ \, {\rm shoreline} \\ \times \ \, {\rm Introduce} \ \, {\rm non} \ \, {\rm physical} \ \, {\rm fluid} \ \, {\rm speed} \end{array}$

 \square

0 0000

Numerical results 2000 Conclusions 0

Ghost cells

11/16

- Virtually split the element on the shoreline, introduce a ghost cell (☑)
 - ▶ The mesh is not modified !
 - The support of basis functions is modified

 $\overline{}$

	Shallow 0000	Water	Equations	DG	
0	0000				

Numerical results

Conclusions 0

Ghost cells

- Virtually split the element on the shoreline, introduce a ghost cell (☑)
 - ▶ The mesh is not modified !
 - The support of basis functions is modified
- \Rightarrow No loss of hyperbolicity at the interface
- \Rightarrow Well balanced on the shoreline

N C	lotivations	Shallow 0000	Water	Equation

w Water Equations with DG method

Flooding and Drying treatment ○○○○● Numerical results 2000 Conclusions 0

Ghost cells

- Virtually split the element on the shoreline, introduce a ghost cell (☑)
 - ▶ The mesh is not modified !
 - The support of basis functions is modified
- \Rightarrow No loss of hyperbolicity at the interface
- \Rightarrow Well balanced on the shoreline
- imes Introduce non physical fluid speed

Shallow Water	 Equations 	DG	

Uni-dimensional - Carrier & Greenspan test case

Monochromatic wave running up and down on a beach plane³

³Carrier and Greenspan. 1958 Journal of Fluid Mechanics.

Shallow Water Equations with DG method	Flooding and Drying treatment	Numerical results ●○○○	Conclusions 0

Uni-dimensional - Carrier & Greenspan test case

Numerical solution with
$$p = 1$$
 and $\Delta x = 0.06m$

	Water	Equations	DG	

Conclusions 0

RÉGION SUD

Uni-dimensional - Carrier & Greenspan test case

Shallow Water	Equations	DG	

Numerical results

Conclusions 0

RÉGION SUD

Uni-dimensional - Carrier & Greenspan test case

Shallow Water Equations with DG method	Flooding and Drying treatment	Numerical results ○●○○	Conclusions 0
 B I I I			

Uni-dimensional - Roeber test case

Numerical solution with p=1 and $\Delta x=0.42m$

ivations Shallow Water Equations with DG method

Flooding and Drying treatment

Numerical results

Conclusions

Bi-dimensional - Parabolic bowl test case

³ Bunya et al. 2009 Computer Methods in Applied Mechanics and Engineering.

₹

	Shallow Water Equations with DG method	Flooding and Drying treatment	Numerical results ○○●○	Conclusions O
Di dimonsional	Daugh alls have been			

Bi-dimensional - Parabolic bowl test case

Numerical results

Conclusions

Bi-dimensional - Conical island test case

³Roeber and Cheung. 2012 Coastal Engineering.

Shallow Water Equations with DG method	Flooding and Drying treatment	Numerical results ○○○●	Conclusion 0

Bi-dimensional - Conical island test case

Numerical solution with p = 1, $\Delta x = 0.42m$ and Slope Modification

Motivations 0	Shallow Water Equations with DG method	Flooding and Drying treatment	Numerical results	Conclusions

- Solve Shallow Water equations with Discontinuous Galerkin discretization
- Solve problem with dry areas in one and two dimensions
- Implement and validate in three drying treatment
- Ghost Cell method performs better than usual methods
- Make coexisting adaptative mesh refinement and drying treatment
- $\Rightarrow\,$ Work on coupling Richards' equation and Shallow Water equations

